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1.0 INTRODUCTION AND BACKGROUND

1.1 INTRODUCTION

X, This paper is intended as a primer on image compression techniques
as they apply to compressing Synthetic Aperture Radar (SAR) imagery.
Particular attention will be focused on two techniques which ara
thought to be particularly suitable to this particular application
because of their simplicity and speed, namely Vector Quantization (VQ)
and Block Truncation Coding (BTC). More well-known techniques such as
Differential Pulse Code Modulation (OPCM) and Discrete Cosine Trans-
form (DCT) will also be discussed, Recommendations for experiments on
SAR imagery are mado.J

1.2 UNIQUE ASPECTS OF SAR

3 SAR imagery differs from conventional visual band photographic or
electro-optical imagery in two significant respects: first by having a
large dynamic range (as great as 96 dB), and second, by the presence

of speckle noise, the sort of noise seen in optical holography.(Rcf'i{t
-1=8), Since SAR 1{mages are produced by coherent processing of

scattering-type signal reflections, speckle effects are produced by
what has been described as {intra-pixel interferometry: the coherent
signal interaction betwesn separate scattarers within a single pixel,
This speckle phenomenon is always presant and varies from pulse to
pulse for a given pixel, Speckle contains information pertaining to
the size and location of terrain scatterers and perhaps to sub-pixel
textural information (Tomiyasu [8]), but for most common SAR imaging
applications this information is of no concern, and in fact can be
described as signal-dependent (multiplicative) noise. In holography
this degradation has been estimated as causing a reduction in resolu-
tion such that an aperture 2.6 times as large as that required for a
speckie-free image would be necessary for equivalent resolution
(Kozma, [2]). Speckle noise 1ikely contributes to a reduction in
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adjacent cell correlation according to a Rayleigh model described by
Wu [3], Spatial lowpass filtering can be used to smooth the speckle
noise, but edge sharpness {s reduced by such filtering. Multiple-look
averaging will improve the {mage quality without blurring edges, but
at the expense of requiring collection of the additional information.
Numerous approaches to the speckle-reduction problem have been stud-
fed. Lim and Nawab [4] observed that grey scale modification could be
used to improve the image. This {s of note since grey scale modifica-
tion represents a dynamic range adjustment (DRA); thus 1t may be
expected that a logarithmic type of DRA will decrease the speckle
effect, The same authors found some {mprovement using homomorphic
filtering such as described by Oppenheim [14]. A homomorphic Wiener
filter was found effective by Jain and Christensen [6]. Tur, Chin,
and Goodman [7] have observed that the multiplicative noise model is
not always valid for speckle, specifically, when the object 1maqdd
contains fine details which cannot be resolved by the imaging system.
Lee [9] has proposed a filtering approach called Sigma Filtering, in
which each pixel {s replaced by an average of those neighboring pixels
which have their amplitude levels within two standard deviations of
that pixel. Lee's approach minimizes degradation of fine detail, as
does the recent approach of Crimmons called Geometric Filtering [10],
(11]. Geometric Filtering 1s an iterative non-linear geometric ap-
proach using the convex hull description of a pixel set. Crimmons
defines a Speckle Index as the ratio of deviation to mean of a block
of pixels, and demonstrates superior reduction of speckle so defined
using geometric filtering as compared with look averaging.

Speckle reduction 1{s considered relevant to {image compression
because: (1) in the case of the Discrete Cosine Transform (DCT),
speckle very 1ikely causes the algorithm to assign bits to transform
domain regions (such as the high spatial frequencies) which typically
should receive very few bits, thus forcing an unwanted reallocation of
bits; (2) in the case of Block Truncation Coding (BTC), the algorithm
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codes and transmits block standard deviation, and since speckle repre-
sents a non {nformation-bearing component (for gypical exploitation

applications) which contributes to the block v;(?wwce. it may well
contribute to the coding of unnecessary hits for the block variance.




2.0 COMPRESSION AND CODING

General discussions on compression are contained in References
[12-15]. Brief discussions on Remapping and Log compression are given
below, followed by descriptions of Differential Pulse Code Modulation
(OPCM), Transform Domain approaches such as the Discrete Cosine Trans-
form (DCT), and finally by discussions of Block Truncation Coding
(BTC) and Vector Quantization (VQ).

2.1 REMAPPING

Remapping techniques are those which can be 1mplemoﬁtod by the use
of simple lookup tables which map one image pixel amplitude into
another amplitide on the basis of input amplitude. Strictly speaking,
remapping may or may not result in a compression of the number of bits
per pixel, but may simply expand or contract the range of output value
for a corresponding input range in order to {prove viewing or to
match the characteristics of a display device (Matthews, et al [16]).
This {s somstimes performed to expand the contrast over a desired
range of amplitudes where desired features are felt to lie, and is
then referred to as Dynamic Range Adjustment (DRA). If the output
range 1s re-quantized at fewer bits per pixel, a data compression
results. Lipes [17] reports on compression of SAR using various
quantizations., The quantizing is optimally done so as to result in
minimum average error i{n the quantized signal by apportioning the
quantizing ranges as described by Max [18].

2.2 LOG COMPRESSION

. A particular remapping, the log transform, has been recommended
for compression of SAR imagery by Crowe, et al [19]. An actual exam-
ple of such a remapping used to achieve compression is the log com-
pression presently in use in the ASARS, in which a 96 dB dynamic range
has been achieved by 1{incorporating a scaling parameter derived from




the system AGC into the log compression, Informal experiments by the
ASARS contractor have resulted in pleasing results from using a simple
square-root compression having only 48 dB8 of dynamic range.

2.3 SPATIAL-DOMAIN ENCODING

Differential Pulse Code Modulation (DPCM) 1s a compression tech-
nique that has been subject to much examination in the 1iterature, and
thus will only be dealt with briefly here, Lynch [12] and Oppenheim
[14] provide good general descriptions. ODPCM algorithms achieve com-
pression by employing an embellishment on what is called “"delta modu-
lation", where only a one-bit estimate (slope up or slope down esti-
mate of) the difference between adjacent pixels rather than their
absolute value is transmitted. In the case of DPCM, a predictor is
employed to make an estimate of an adjacent pixel amplitude based on
the value of one or more of its neighbors. ldentical predictor equa-
tions are employed at both the sending and receiving ends, thus making
it possible to store or transmit only the difference between the
actual and predicted values. Considering a spatial matrix of pixels
with a single pixel designated as x(m,n), a typical linear predictor
equation might have the form:

x(m, n) = +0.75*x(m, n - 1) + 0.75*x(m =1, n) = 0.5*x(m - 1, n = 1)

If all three adjacent pixels (left, above, and above-left) were equal,
the predicted value would be equal to that value, whereas if the
“above-left" pixel were low in amplitude, the predicted value would be
correspondingly higher since the three pixels would appear to define a
plane sloping upwards toward the pixel to be predicted. Although the
coefficient terms above add to unity, this need not be the case in
general, Calculation of predictor coefficients based on the statis-
tics of the imagery will result {n appropriate coefficients for that
imagery. Subtracting the predicted value from the actual pixel value
at the point of the original 1image leaves an error term which can be




quantized into fewer bits than the original pixels and then transmit-
ted or stored. Practical ODPCM systems typically achieve average com-
pressed quantization levels of between 4 and 5 bits per pixel. The
design of the quantizer lookup tables should be done according to the
nature of the type of imagery to be transmitted. The error signal of
SAR will most 1ikely have a different probability distribution than
the corresponding error signal for photographic or IR imagery., An
optimum quantizer will have its quantization ranges apportioned so as
to minimize the overall error probability on the average; different
Quantizer Tables should thus be employed according to the class of
imagery. DPCM systems designed in two dimensions such as the above
equation are often described as 20-DPCM to distinguish them from
single dimension or temporal schemes such as used with time waveforms
11ke speech, Adaptive DPCM (ADPCM) applies to systems which adapt the
predictor or the quantizer to the statistics of the input image on a
block basis, Practical DPCM systems typically achieve average com-
pressed quantized levels of between 4 and 5 bits per pixel, although
Werness [20] has described a dual rate predictor (ADPCM) which
achieves coding rates ranging between 1.3 and 2.3 bits per pixel for
SAR data,

2.4 BLOCK copING = T

Block coding of images includes those coding or compression tech-
niques which operate on blocks of data samples, typically square in
the case of imagery. Such algorithms include the transform techniques
such as DCT, and quantization techniques such as Block Truncation
Coding (BTC), and Vector Quantizing (VQ). These algorithms typically
process each block differently according to the local statistics of
each block, so a common concern among them {s the occurrence of visi-
ble block boundaries in some processing situations and at larger block
sizes (say 16x16 blocks as opposed to 4x4 blocks). Habibi [21] and
Gonsalves [22] provide comparisons of block techniques with DPCM.
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2.4,1 Transform-Domain Techniques

Transform domain techniques (Wintz, [23]) in general achieve their
effectiveness by taking advantage of the fact that the information
contained 1n some of the transformed values of the image is greater
than in others. That is, transforming a spatial image using a common
transformation such as the Discrete Fourier Transform, one obtains an
orthogonal or uncorrelated set of coefficient values in the spatial
frequency domain; the information contained 1in the high spatial fre-
quency coefficients has been shown to be of less value than those of
lower frequency. It s thus possible to either dispose of the less
important coefficients, or assign fewer bits to them in an encoding
scheme prior to storage or transmission. A number of transforms have
been investigated over the years, and 1t has been shown that the opti-
mal orthogonal transform from a coefficient truncation mean-square
error (MSE) sense {s the Karhunen-Loeve (K-L) transform. However, no
efficient algorithm exists for computing the K-L transform, Given
this fact, other transforms which do have “fast" algorithms have been
investigated, including the Haar, Slant, Walsh, and the DFT/FFT, It
is generally concluded that, for Markov sources, the DCT gives the MSE
performance closest to the optimum K-L results, as described by Ahmed,
et al [24]. Gioutsos and Werness [25] have found that in the case of
SAR imagery, the Sine transform rather than the Cosine transform is
optimum. It should be noted that the MSE measure of performance is
commonly used because it is objective and can be easily be measured;
however, it is a pixel-orientud measure, and may not be truly indica-
tive of the actual spatial feature distortion., Werness [15] has pro-
posed a set of metrics for evaluating the performance of compression
schemes that take into account the unique nature of SAR imagery; the
metrics quantify two types of noise common in predictive systems such
as ADPCM: slope overload and large quantizer step size noise,
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As compared to simple algorithms such as the BTC or simple spatial
VQ, the DCT is computationally intensive, but can result in compres-
sion rates below 2 bhits/pixel with 1ittle visual degradation. The
heart of the scheme is a systematic apportionment of quantization bits
across the set of transform coefficients, with those coefficients in
the “upper left" of the coefficient matrix, corresponding to those
components closer to zero spatial frequency, being assigned the
greater number of bits. The highest spatial frequency components are
often discarded or assigned only one bit, Each coefficient is then
quantized according to the number of assigned bits, with quantization
lookup tables available for each bit-assignment case. The quantizer
tables must be optimized so as to minimize the quantization error,
thus taking into account the probability distribution of the transform
coefficients. In order to achieve consistent performance, it then
becomes necessary to engage fn normalization of the input blocks prior
to performing the 20 transforms from the spatial domain, It {s typi-
cal to do the transforms using blocks on the order of 16x16. In addi-
tion to the computation intensity of the two dimensional cosine trans-
form, the normalization calculations and selection of bit assignment
rules add significantly to the complexity of DCT types of transforms,
Chen and Smith [26] describe a practical OCT implementation. Re-
cently, a two dimensional Fast Cosine Transform (FCT) has been intro-
duced by Lee [27] as a means of improving on the computational effi-
ciency of the DCT, with refinements described by Haque [28].

2.4.2 Block Truncation Coding (BTC)

A recently developed spatial domain compression technique {s Block
Truncation Coding (BTC). References [29]-[39] describe BTC and 1ts
application to visual-domain imagery. The application to Seasat SAR
imagery 1s described by Frost in [39]. Figure 2-1 1llustrates the BTC
procedure, The BTC algorithm uses a two-level (one-bit) non-
parametric quantizer which adapts to preserve the first two local
moments of the {mage. Non-overiapping blocks (typically 4 x 4 or




FIGURE 2-1, BTC TECHNIQUE
Suppose a 4 x 4 1image block consists of the following pixel
amplitudes:
116 120 53 49
36 199 255 249
17 0 10 170
30 3 6 249
The block mean and standard deviation are thus:
X = mean = 97,63
g = std, dev. = 93.79

with
k = 16 = number of elaments in the block

Using the block mean as the threshold value,

q = 7 = the number of pixels above the threshold

ylelds: a = 14 (to the nearest integer)
b = 203

for the "low" and "high" values respectively.

The bit plane {is then

OO O
OO s
OO
— e s O

resulting in a reconstructed block of
203 203 14 14
14 203 203 203
14 14 14 203
14 14 14 203

which preserves the block mean and standard deviation.

10
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8 x 8 pixels) are replaced with pixels quantized to one of two levels
$0 that the mean and variance of the block are maintained. The two
Jevels for each block represent local “bright" and “dark". A bit
plane of one's and zero's {s transmitted,representing each pixel as
either high (bright) or low (dark), corresponding to pixels above or
below the block means., Also transmitted are quantized values of the
block mean (corresponding to the average pixel brightness) and block
standard deviation (corresponding to the pixel contrast within the

" block). The receiver or decoder reconstructs an approximation to the
original block by replacing each pixel having a "high" value repre-
sented by a “one" in the bit plane by a value equal to

buX+eal(k-q)/q

and points represéhted by a “"zero" in the bit plane by
a=X-olq/(k-q)

where X = block mean
¢ = block standard deviation
k = number of points in block
q = number of points above the block mean

Thus each point above the threshold (the original block mean) is re-
placed by value equal to *"b*, and those below the mean by a value
equal to "a", The process is 1llustrated in Figure 2-1. The threshold
is commonly chosen a prior{ to be the block mean, although other more
complex calculated thresholds have been proposed in order to preserve
higher<order moments. As seen in Figure 2-1, the compressed block
consists of pixels having a value above the original block mean (the
204-values) and pixels below the mean (the 17-values). The block mean
and variance of this new block are identical to those of the original
block. The transformation 1{s repeated for every (non-overlapping)
block over the image, with new high and low values calculated for each

11
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block. The average value (or average brightness) and variance (corre-
sponding to the contrast between pixels) are thus adaptive over the
image, adjusting to fit the image at each 4 x 4 area, for example,
The required number of bits to be transmitted {s simply

m2 + N(mean) + NSTOEV,

where mé = block size (4 x 4 = 16 for a square 4 x 4 block) and NMean,
NSTDEV are the numbar of bits used to encode the block mean and block
standard deviation. If the mean and standard deviation were each
represanted by 8 bits, then a 4 x 4 block would require 16 bits for
the 1-bit mask and 2 x 8 = 18 bits for the mean and standard devia-
tion, giving a total of 32 bits for 18 pixels, or 2.0 bits per pixel.
If 8 x 8 blocks were similarly encoded, the result would be 80 bits
for 64 pixels, or 1.25 bits per pixel. The performance {s seen to be
asymptotic to 1 bit per pixel with increasing block size, The general
formula for the number of bits per pixel is simply:

bpp = 1 + (NM + NV)/(Block Size)

where bpp = bits/pixel
NM = Number of bits used to encode the block mean

NV = Number_ of bits used to encode the block standard
deviation,

12
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3.0 BTC RESULTS

The results of Block Truncation Coding of SAR imagery are shown in
Figures 31 through 3-4, These figures were obtained photographically
using a DeAnza image processing softcopy (CRT) display having 512 x
512 display resolution, with 256 1levels of intensity displayed, For
this {nvestigation,an original STAR=1 SAR image of Belle Isle and
Belle Isle Bridge fn the Detroit River was used (Figure 3-1). The
digital image, having 15 bits/pixel, 1{s first mapped to 8 bits/pixel
using a 1in/log dynamic range adjustment (DRA) as {is typical for SAR
data display. No transmission error effects are included. The mean
and standard deviation parameters are quantized at 8 bits (per block)
each, The results of the 4 x 4 BTC (2.0 bits per pixel), 8 x 8 BTC
(1.25 bits/pixel) and 16 x 16 BTC (1.08 bits/pixel) are presented for
the same SAR scene in Figures 3-2 through 3-4 respectively. The BTC4
results are clearly superior to those of BTC8 and BTC16; the marginal
{mprovement 1n compression available by increasing block size is small
as BTC asymptotically approaches 1 bit per pixel, As the BTC block
size increasas, the underlying blocks can be saen in the image, par-
ticularly for the 16 x 16 BTC. However, flicker comparisons between
BTC4 and the original images reveal almost no differences: some bright
pixels are reduced slightly in amplitude, while some darker pixels
increase slightly, but shapes and edges are preserved quite well., A 4
x 4 block size 1s so small that {t is virtually unnoticeable to an
observer. Thus we conclude that SAR data compression up to 2 bits/
pixel can be achieved using BTC with 4 x 4 blocks without significant
loss of image quality.

BYC has sometimes been considered as a special case of Vector
Quantizing, discussed below. One significant difference 1ies in the
non-parametric or adaptive nature of BTC; the algorithm adjusts to the
statistics of each individual scene on a block by block basis.

13




87-11355

87.10489-1

FIGURE 3-1. FULL RESOLUTION SAR IMAGE




87.11356

87:10459-4

FIGURE 3-2, 4 X4 BTC IMAGE
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87.11387

87-10459-7

FIAURE 3-3. 8 X 8 BTC IMAGE




87-11388

§7-10488-10

FIGURE 34. 18 X 18 BTC IMAQE
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3.1 COMPARISON OF BTC WITH DPCM

In comparison with adaptive DPCM (ADPCM), probably the most preva-
lent example of a spatial-domain compression technique, a number of
aspects of BTC are noteworthy. BTC {s i{nherently block adaptive in
that all the coding parameters have the ability to change at every
block, DPCM is computationally more complex than BTC: a three-step
ADPCM predictor based cn pixels to the left, above, and at a 459 angle
would require three multiplications for every pixel for the prediction
process alone. The ADPCM coder 1loop {s more complex than the BTC
coding process, requiring an ADPCM decoder in the predictor feedback
loop as the cost required to achieve somewhat higher expected quality
than with BTC,

Channe! errors are observed in the reconstructed image differently
in BTC and DPCM. In DPCM the channsl errors appear as streaks in the
image. If the DPCM predictor 1s not adaptive or new initial condi-
tions aré not sent after a few rows of the image, then these streaks
will propagate throughout the entire image.. The amount of propagation
1s determined by the type of predictor used. If a Moving Average
(MA) predictor is used, there will be no streaking. For BTC the
errors appear as bad blocks of data (small and leocalized in the case
of 4 x 4 pixel blocks).

Reference (31] describes a DPCM algorithm capable of compressing
photographic images from 11 to 3 bits/pixel with {ndiscernible (sub-
Jective) visual degradation. A conservative BTC approach (4 x 4, with
11 bits per input pixel and 11 bit mean and standard deviation) would
achieve 2,375 bits/pixel, by comparison, An interesting combination
of DPCM and BTC has been suggested {n Reference [32], {n which the
DPCM difference signal is quantized to one bit using BTC. A photo-
graphic 1mage was quantized to 1,18 bits/pixel using this hybrid tech-
nique, compared to a 1.63 bits/pixel rate for BTC alone for the same
image.

a3
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3.2 VECTOR QUANTIZING

Vector Quantizing (VQ) as first applied to temporal signals is
described by Gray [40], and by Gersho [41] as applied to imagery. An
appreciation for the possibilities {nherent in VQ can be gained by
recalling a classical result from communication theory, namely that
the error perfcrmance achieved in encoding a sequence of data samples
may he decreased to an arbitrarily small lavel by coding the data in
increasingly large blocks of samples. This result is known as the
Block Orthogonal Coding case. The application of this principle to
data compression can be appreciated by considering that the same tech-
nique of block data encoding could be applied, not to reduce error
with increasing block length, but holding the error rate constant with
increasing block Tength, and compensating for the potentially improved
error performance by allowing quantizing noise to increase by coarser
quantizing. The net would be to encode with fewer bits, thus achieve
ing compression. In general then, enceding the samples in blocks or
vectors rather than individually (as scaler amplitudes) can be used
either to achieve compression or to reduce error rate. Reducing the
average number of bits per encoded sample while encoding blocks is
called Vector Quantization,

Figure 3-5 11lustrates the basic¢ principle of VQ with a very sim«
ple one-dimensional case encoding signal samplas by pairs. Figure 3-6
extends the technique to the two-dimensional image case. The key step
of the process is the selection of the optimum mapping from an input
sample block or vector to one of a 1imited set of representative code-
vectors. The set of possible codevectors must be chosen based on the
probability densities of the input blocks 30 as to minimize the over-
all average error or image distortion. The most popular means of
determining this codebook mapping 1{s by employing an optimization
algorithm known as the LBG algorithm, in reference to the three au-
thors (Linde, Buzo, and Gray, [42]) who developed I{t. A codebook
produced by such a process for imagery data {s represented by a set of

24
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representative pixel patches as shown in Figure 3-7. In this example
case, the 64 representative pixel blocks are arrayed in an 8 x 8 ma-
trix (the matrix presentation is arbitrary, only the number of unique
blocks 1s significant). Any 3 x 3 (in this case) input data block fis
replaced by the most appropriate representative block from the code-
book matrix, Thus as one would expect, the codebook consists of
blocks or image patches having various intensities and gradients, with
some of the blocks having typical edge patterns,

Compression results of 0,66 bit/pixel can be achieved using 3 x 3
input blocks with a 1ibrary of 64 codevector blocks. Such VQ tech-
niques are found to encode visual imagery with very 1i{ttle perceptual
degradation except at sharp edges, where a staircase effect is found.
This latter distortion has been attacked by using a Classified VQ
(CVQ) to first classify the block as to type in order to separate out
the blocks having edges and encode them from a special code table for
edge blocks, Ramamurthi and Gersho describe CVQ in [43]. A number of
further extensions to VQ are given by Nasrabadi in [44], including
predictor techniques and vector coding of .transform coefficients,
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4.0 RECOMMENDATIONS

No results of the application of VQ to SAR imagery are available
at present. Considering the nature of SAR imagery as described ear-
11er, it may Le possible suggest areas for investigation as to the
best means to employ VQ with SAR imagery:

e To what degree does the edge fidelity criterion apply to SAR
imagery.

o The effect that GSpeckle-reduction algorithms would have on
' simp11fying codebook selection operations,

¢ The inherent degradation of target patterns which would be
incurred using VQ (jagged edges for example) may affect image
utility different for human Image Analysts (IAs) than it would
affect current generation Automatic Target Recognition (ATR)
algorithms; the relative effects of such degradations should
be investigated by a comparative experimental effort,

It {s thus recommended that:

* A codebook optimization algorithm be {mplemented (such as the
LBG algorithm) and run against representative SAR imagery
containing tactical targets of interest.

e In house trained IA's be employed to assess the degradation of
target signatures for simple VQ (as opposed to Classified VQ,
or CVQ). This assessment would include a recommendation as to
whether a more complex mulitistage VQ approach such as CVQ be
employed to retain edge fidelity.

e The utility of speckle reduction for pre-VQ processing or
post-VQ edge smoothing should be investigated,

e A modest performance single stage VQ having small blocks
(3 x 3 recommended) be used for baseline, with codebcok sizes
of 64 and 256 be employed.

29
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